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Abstract 

In a recent series of papers, a procedure has been 
described for phasing all the reflections up to derivative 
resolution by using triplet phase relationships 
[Giacovazzo, Cascarano & Zheng (1988). Acta Cryst. 
A44, 45-51]. The resulting electron-density maps show 
good correlation with the correct maps but usually are 
not straightforwardly interpretable. In this paper, the 
quality of the phases is improved by: (a) exploiting the 
information on the heavy-atom structure, which becomes 
available as soon as protein phases are available; (b) 
applying a suitable solvent-flattening procedure (FLEX), 
which proves highly effective in reducing the phase error. 

1. Symbols and abbreviations 

Symbols and notations are basically the same as in papers 
I-VI of a series (Giacovazzo, Siliqi & Ralph, 1994; 
Giacovazzo, Siliqi & Spagna, 1994; Giacovazzo, Siliqi & 
Zanotti, 1995; Giacovazzo & Gonzalez-Platas, 1995; 
Giacovazzo, Siliqi & Gonzalez-Platas, 1995; Giacovazzo, 
Siliqi, Gortzalez-Platas, Hecht, Zanotti & York, 1996). 

2. Introduction 

Traditional direct methods (e.g. Sayre's equation, tangent 
formula, determinantal approaches etc.) cannot solve ab 
initio crystal structures of common size proteins. 
Supplementary information is needed which may be 
provided, for example, by derivative data. The integration 
of direct methods with isomorphous replacement tech- 
niques (SIR case) was first accomplished by Hauptman 
(1982), who derived the joint probability distribution of 
the six structure factors 

P(Eh, Ek, Eh_k, Gh, Gk, Gh-k), 

E and G being the structure factors of the native protein 
and of the derivative, respectively. The conditional 
probability formula estimating the triplet phase invariant 
(constituted by native phases) 

= q~h -- 4'k -- q~h-k 

given the six moduli R i = IE;I and S i = [Gil is of the von 
Mises type. Its concentration parameter, stating the 
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reliability of the phase indication, is a complicated 
expression of the six moduli. The Hauptman mathema- 
tical procedure was reconsidered by Giacovazzo, 
Cascarano & Zheng (1988), who obtained a simpler 
distribution: 

P(~)"~-[2Mo(A)] -1 exp(A cos ~), (1) 

where 

3/2 
A = 2[ff3/0-3/2]pRhRkRh_ k q- 2[0"3/0" 2 ] H A h A k A h _ k  

and A -- (IFal-  IFpI)/Eg 2 is the pseudo-normalized 
difference (with respect to the heavy-atom structure). 

Papers I-VI were devoted to describing a procedure 
for phasing all the reflections up to derivative resolution 
based on the application of relation (1). Applications to 
experimental data were successful, so that the procedure 
can be considered to be competitive with traditional SIR 
techniques. It may be briefly described as follows. 

(a) Normalization step (see papers III and V). The 
usual Wilson plot technique is used to scale native data. 
Then a differential Wilson plot (Blundell & Johnson, 
1976) is applied for approximately scaling the derivative 
on native data. The final scaling factor is found by using 
the properties of the P(A) distribution, which proves to 
be basic mostly when the derivative resolution is 4 A or 
less. 

(b) Phasing step (see papers III and VI). The set of 
reflections up to derivative resolution is divided in 
batches. For the first batch (usually constituted by 800- 
1000 reflections with the largest values of iA I), a starting 
set of phases is generated by a random process (Baggio, 
Woolfson, Declercq & Germain, 1978) to which a 
weighted tangent formula, arising from equation (1), is 
applied. Among the various trials produced by the 
multisolution approach, that with the highest value of 
CFOM [CFOM is the combined figure of merit; see step 
(c)] is chosen. Then batches of about 200 reflections, 
chosen in decreasing order of I AI, are progressively 
phased via a phase-extension procedure from batch no 1. 

(c) Identification of  the correct solution. Figures of 
merit are used to identify the correct solution. If the 
derivative is of sufficiently high quality, there is no 
difficulty in finding the correct solution among the 
various trials. A supplementary check requires the use of 
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the difference Fourier synthesis (for the first batch of 
reflections only) in order to discard trials with high 
figures of merit but locating heavy atoms on allowed 
origins (see paper V). Structure 

The above procedure provides electron-density maps code 
that are at least as informative as those generated by APW 
application of traditional SIR techniques (see paper VI). BPO e 
The results may be described as: (i) all the reflections up E2 c 
to derivative resolution can be phased. To each phase, a M -FABPa 
weight is associated that is related to the reliability of the NOXe 

phase indication, and arises from the application of the 
tangent formula; (ii) the maps are directly interpretable 
only when a high-quality derivative is available; (iii) bad 
isomorphism and heavy errors in measurements can 
hinder the success of the procedure. However, even in 
this case, an interesting correlation between the trial map 
and the 'true' map can be found; (iv) The procedure does 
not require the previous knowledge of the heavy-atom 
structure. Thus, protein phases can be obtained in the 
absence of such information, which is instead basic for 
traditional SIR techniques. This last property is of 
concem in this paper. Structure 

If phases are obtained without knowing the heavy- code 
atom structure, can its prior knowledge improve them? 

APP 
This question is of non-negligible interest: indeed, the BPO 
refinement of the heavy-atom structure is a central tool E2 
for phase refinement in traditional SIR techniques (Cura, M-rASP 
Krishnaswamy & Podjamy, 1992; Rould, Perona & NOX 
Steitz, 1992). Part of this paper will be devoted to our 
attempts to improve phases obtained via equation (1) by 
using the prior information on the heavy-atom structure. 
The second part of the paper Will be devoted to a solvent- 
flattening procedure, which shows interesting features of 
effectiveness and automatism. It starts once the procedure 
described in papers I-VI stops, and aims at extending and 
refining phases up to derivative resolution. 

3. About  the use of  the heavy-atom structure 

It has been emphasized that our direct-methods proce- 
dure works in the absence of any information on the 
heavy-atom structure. A decision however is required by 
the user when the procedure is started. In the normal- 
ization step, the application of both the differential 
Wilson plot and the P(A) distribution depend on the ratio 
[~2]n/[a2]v. While [~2]p is approximately known, no 
information on [~2]H is available. The ratio will depend 
on the number of heavy-atom sites per asymmetric unit 
and on the site occupancy. In the applications described 
here, we will use the same test structures and the 
corresponding experimental data employed in papers II- 
I~. The main characteristics of these data are shown in 
Table 1. In the applications described in papers H-IV, we 
assumed one heavy-atom site per asymmetric unit for 
APP, M-FABP, E2 and NOX and two sites for BPO, as in 
the published heavy-atom models. In contrast to this, we 
always fixed to unity the occupancy of such sites. Our 

Table 1. Relevant parameters for  diffraction data o f  the 
test structures 

Native Derivative 
Heavy 

RES (A) NREFL atom RES (A) NREFL 

0.99 17058 Hg 2.00 2108 
2.35 23956 Au 2.78 15741 
2.65 10391 Hg 3.00 9581 
2.14 7595 Hg 3.00 7125 
3.00 4619 Pt 3.00 4520 

References: (a) Glover et al. (1983); (b) Hecht, Sobek, Haag, Pfeifer & 
Van Pee (1994); (c) Mattevi et  al. (1992); (d) Zanotti, Scapin, Spadon, 
Veerkamp & Sacchettini (1992); (e) Hecht, Erdmann, Park, Sprinzl & 
Schmid (1995). 

Table 2. Mean phase error (ERR) for the test structures 
up to derivative resolution 

[crz]z4/[crz] p parameters correspond to unitary occupancy factors of the 
heavy-atom sites. NREFD is the number of phased reflections up to 
derivative resolution. CORR is the correlation factor between direct- 
methods map (derivative resolution) and 'true' map (native resolution). 

ERR 
[,r2]./[,r2]~ NREFD (weighted) CORR 

0.456 1850 61 (57) 0.3927 
0.062 12774 57 (52) 0.4490 
0.078 6575 57 (52) 0.5121 
0.128 5456 64 (61) 0.3733 
0.081 4066 73 (69) 0.3129 

direct-method procedure yielded the results in Table 2. 
NREFD is the number of phased reflections up to 
derivative resolution, ERR is the phase error of the 
assigned phase values (with the weighted phase error in 
parentheses), CORR is the correlation of our electron- 
density map p (calculated by directly phased reflections 
up to derivative resolution) with the 'true' map Pmod 
corresponding to the published phases (all reflections up 
to native resolution included). CORR has been calculated 
according to: 

C O R R  = (PPmod) -- (P)(Pmod) 
((p2) _ ( p ) 2 ) l / Z ( ( p 2 o d )  _ (Pmod)2)l/2 " 

The arbitrary choice of the [az]~z/[cr2] p parameters may be 
corrected as follows. Once phases are available, a 
difference Fourier synthesis with coefficients 
(Fa - Fp)exp(i4~p) is calculated, which provides approx- 
imate heavy-atom structure parameters: these are refined 
according to Dickerson, Kendrew & Strandberg (1961). 
The scaling of derivative on native data is performed by 
exploiting the P(A) curves corresponding to the new 
[trz]H/[cr2] p values. New A's arise, which are then used in 
the phasing process. This time we do not need to enter 
into a multisolution procedure: it suffices to refine by a 
tangent process the phases obtained via the old A's. The 
results are in Table 3. Modest improvement of ERR and/ 
or CORR values is obtained for APP and M-FABE For 
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these structures, the new [0"2]H/[0"2]p values are very 
different from the old ones: consequently, the corre- 
sponding P(A) curves are also quite different (see Fig. 
III.2). For BPO and E2, the refined values of [0"]~r/[0"]p do 
not substantially modify the previous situation, while for 
NOX it becomes slightly worse. 

It may be concluded that the prior knowledge of the 
parameter [0"2]H/[0.2]p is not critical for the success of the 
phasing procedure, which can safely work by using a 
rough approximation of its true value. However, when 
the 'true' value of [0.2]14/[0.2]p is known, this may 
remarkably improve the efficiency of the procedure, 
provided the initial value of  [0.2114/[0.2]p was very wrong. 

A new perspective can be considered: the distribution 
(1) has been derived in the absence of any information on 
the ~ heavy-atom structure. Can this supplementary 
information be used for improving the probability 
distribution of the triplet phases? An affirmative answer 
should make the tangent procedure more effective and 
lead to a remarkable reduction of  the average phase error. 
Proposals for incorporating the heavy-atom structure 
information into the triplet phase distributions were made 
by various authors. The most significant are those 
suggested by Fortier, Moore & Fraser (1985) and by 
Klop, Krabbendam & Kroon (1987). Both are based on 
the following background. 

Once the heavy atoms have been located, the cosine 
moduli of  the doublet invariants 3; = ~i - q~i, i -- 1, 2, 3, 
can be estimated via the Carnot relation 

cos3 = ([Fal 2 - I F p l  2 -IF~IIZ)/2IFdFpl . (2) 

Accordingly, the distribution 

e(t~l , t~2 , t~3 , 31,32, 33 I{R' g, S;, i = 1,2, 3}) (3) 

can be derived by a simple change of  variable from the 
distribution 

P(q~l, q~2, q~3, ~Pl, ~2, ~3]{RI, S~, i =  1,2,3}). 

We have 

P(~b 1, ~b 2, t~3 , 31, 32, 33 ]{Rti, S~, i = 1, 2, 3}) 

3 3/2 
(1/L)exp F_,2R'iS~cos3 i + 2[0"3/0- 2 ]p 

i=1 
D t D t D t  3/2 t t t 

x -~1-'2-~3 cos • + 2[0.3/0. 2 ]H[-RIR2R3 cos 
~ t O t O t  COS((I) 21- 31) D t ~ t D '  COS((I) "31- 32) + ~1-~-2-,3 - -  ~ttl~2,~ 3 

+ , t l , t2~,  3 o t o t ~ t  COS((I) + 33) 7 t-otCtctatlo2o 3 COS((I) + 32 + 33) 

c t D t c t  COS((I) 71- 3 1 71- 33) 

- S'15~R'3 cos(q~ + 31 + 32) 

+ cos(,t, + 3, + + 33)1}. (4) 

In Fortier et al.'s (1985) method, the signs of the 3i's were 
supposed unknown, then from equation (4) the condi- 

Table 3. Mean phase error (ERR) when the information 
on the occupancy o f  the heavy-atom sites has been 

exploited (data up to derivative resolution) 

[o'2]H/[a2]p parameters correspond to refined occupancy factors of  the 
heavy-atom sites. NREFD is the number of  phased reflections up to 
derivative resolution. CORR is the correlation factor between direct- 
methods map (derivative resolution) and 'true' map (native resolution). 

Structure ERR 
code [a2]n/[al] p NREFD (weighted) CORR 

APP 0.055 1863 59 (55) 0.4565 
BPO 0.028 12673 57 (52) 0.4452 
E2 0.021 6556 56 (52) 0.4968 
M-FABP 0.015 5630 64 (60) 0.4069 
NOX 0.041 3858 73 (69) 0.3020 

tional distribution 

P(~I{RI, S ~, 13i[, i = 1,2,3}) (5) 

may be obtained as a weighted sum of the eight 
distributions P(¢I{R~, S~, 13i1, i = 1,2, 3}) corresponding 
to the eight sign combinations of the doublet invariants 
31, 32 and 33. Applications of (5) to experimental data did 
not improve the results in Table 3: the reader is referred 
to a recent paper (Giacovazzo, Siliqi, Cascarano, 
Caliandro & Melidoro, 1997) for details. 

K_lop, Krabbendam & Kroon's (1987) proposal tries to 
exploit also the 3~ signs: indeed, estimates of them are 
available when 4~p and the heavy-atom structure are 
known. The conditional distribution 

e((91, (92, dP3, 31, 32, 33]{Rti, S~, i = 1,2,3}) 

may then be used, from which 

P(~I{RI, S~, 3i, i = 1,2,3}) ~ (1/L)exp[An cos(cb - ~n)] 

(6) 

is obtained, where 

An c o s ~  n 3/2 t t t - -  2[0-3/0- 2 ]pR1R2R 3 

3/2 t t t ~ t  Dt Dt COS31 + 2[o'3/o" 2 ]H[-RIRzR3 + ~1,,2,~3 
Dt fit Dt COS 3 2 + Dt Dt ~t  4- *,1~2-,3 , t V , 2 ~  3 COS 33 

O t ~ t C  t COS(32 -Jr- 33) Ct l~ t~ t  COS(31 + 33 ) - -  ,,1~2t.,3 - -  ,.,1~2~3 

- s'ls l(  cos(a, + 32) 
+ S'lS;S  cos(a, + 32 + 33)] 

- -  2[0-3/0" 2 ]H[S1R2R3 s in31 -+-,tl,_,2at 3 An sin ~n 3/2 ' ' ' o '  v ' o '  sin 32 

o '  o '  ~, ~,' c, ¢' sin(a2 + 33 ) + .~.1.t2o 3 Sin 3 3 - -  .tlO2~, 3 

¢ t l~ tC t  Sin(31 -JV 33) C t c t o t  Sin(31 "3V 32) - -  L,l.~2t., 3 - -  ~.1~2.~ 3 

+ S'1S'2S' 3 sin(31 + 32 + 33)]. 

~,, is the most probable value of ~:  if the 3fs are very 
close to zero, then A n - ]A[ and ~n = 0, zr. This occurs 
when IFHI is negligible with respect to IFpl and ]Fdl, and 
occasionally when FH and Fp have equal or opposite 
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phase value. In order to have more insight into the 
properties and limits of equation (6), we note: 

(a) Equation (6) is expected to be more informative 
than equation (1) because it is able to take into account 
the prior information on the signs of  61, 62 and 63. 
However, in our procedure such signs can only be 
calculated if 4~p and the heavy-atom structure are known. 
Therefore, the efficiency of  equation (6) in practice will 
depend on the accuracy with which the phases q~p and ~bH 
are known. To a first approximation, ~b/~ may be 
considered known with good accuracy: accordingly, ~, 
will depend on the assigned value of ~bp and the 
application of (6) will tend to generate the same errors 
as the application of (1). 

(b) The distribution (1) is obtained in the absence of 
any information on F,q. Incorporating such information 
into (1) a posteriori [that is, after the mathematical form 
of (1) has been fixed on assuming that EH is unknown] is 
a practical but not fully correct way for improving the 
effectiveness of  the distribution. On the other hand, there 
is no sense in trying to derive the distribution 

P(Ep, , Ep2, Ep3, Ed, , Ed2, Ed3, EH, , EH2, EH3 ) (7) 

in order to calculate (6) as a conditional distribution of 
(7). Indeed, Ep,, Edi and EH, are algebraically related by 

Ed, = Ep, + EH, (8) 

and therefore (6) would be Dirac-delta-function-like, 
assuming zero values when (8) is not verified and infinite 
when it is fulfilled. 

We applied (6) both to calculated and to experimental 
data. According to our statements in (a), in the first case 
(6) works much better than (1) since q~p is exactly known. 
On the contrary, when (6) is applied to experimental data, 
it is not able to improve the results in Table 3. 

There are three supplementary ways to profit by the 
prior knowledge of the heavy-atom structure: (i) to 
recognize cross-over cases; (ii) to use the information on 
~H; (iii) to employ better estimates of A. Case (i) is of 
marginal practical interest because very few cross-over 
cases were recognized in our test structures. How this 
case may be managed by (6) is described in Appendix A. 

Case (ii) was considered in paper VI. It was shown that 
the assumption cI, H _~ 0 is implicit in (1), and that the 
number of cases in which such a condition is violated is 
not negligible. Equation (1) could then be modified into 

P(~)  ~ [2Zdo(A)] -1 exp[A cos(~ - ~H)], (9) 

so making more explicit the correlation between SIR and 
direct-methods techniques. While equation (1) suggests 
that the expected value of ~z-/is 0 if A > 0, zr if A < 0, 
equation (9) indicates that the expected value is ~H if 
A > 0, (~H + rr) if A < 0. In order to check the relative 
reliability of (1) and (9), we estimated the triplet phases 
found among the 800 reflections of M-FABP with the 

Table 4. Triplet reliability according to equations (1) and 
(9) 

See the main text for the symbols. 

M-FABP 

NTRP NCOSP <I~I>NCOSP NCOSN (I~I>NcOSN 

15546 13545 68 ° 2001 93 ° 

NTRN NCOSP ([qb[)NCOS v NCOSN <I~I)NcOSN 

13918 12249 108 ° 1669 86 ° 

BPO 

NTRP NCOSP <I~I>NcosP NCOSN <I~I>NcOSN 

25290 20180 60 ° 5110 108 ° 

NTRN NCOSP <I~I>NcosP NCOSN (I~I)NcOSN 

24509 19455 119 ° 5054 71 ° 

largest I AI values. In Table 4, NTRP and NTRN are the 
number of triplets with A > 0 and A < 0, respectively, 
NCOSP and NCOSN are the numbers of triplets with 
cos qb H > 0 and cos ~H < 0, respectively, and (l~l)NcosP 
and (I ~I)NcOSN the average absolute phase values for the 
NCOSP and NCOSN triplets, respectively. Table 4 
clearly shows that triplets with cos ~H < 0 are better 
estimated via (9) than via (1). Similar results, not shown 
for brevity, are obtained for all the test structures. 

We devised two ways to apply (9). The first excludes 
from the phasing process the triplets with cos ~H < 0 
[the rationale is that equations (1) and (9) disagree in this 
case]. The experimental results were disappointing: the 
average absolute phase error at the end of the phasing 
procedure remains practically unchanged. The second 
way actively applies (9) as it is. In Table 5, we show 
statistical calculations on the triplets found among the 
800 reflections of M-FABP with the largest value of IAI. 
Triplet phases are estimated via (1) and (9): NR is the 
number of triplets with IAI > ARG, % is the percentage 
of triplets with correctly estimated cos • value [those 
w i t h  A c o s  (I)es t > 0 when (1) is used, with 
A cos(~es t - ~H) if (9) is used]. 

Table 5 shows that the estimates provided by (9) are 
more accurate: however, the phasing process is unable to 
transform such a larger accuracy into better phases. The 
800 M-FABP reflections are phased by (9) with an 
average error of 40.8 ° against 39.6 ° obtained via (1). A 
more favourable situation is that described in Table 5 for 
BPO. The larger accuracy of (9) positively influences the 
phasing process. The 1000 reflections of BPO (those with 
the largest IAI values) are phased with an absolute 
average error of  30.3 ° i f ( l )  is used and of  28.9 ° i f (9)  is 
used. APP and E2 are in the intermediate situation: the 
average error for APP is 21.3 ° for both (1) and (9), while 
for E2 the error is 28.0 ° when (1) is used and 27.4 ° when 
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Table 5. Triplet phase statistics according to equations 
(1) and (9) 

See the main text for the symbols. 

M-FABP 

Equation (1) Equation (9) 
ARG NR % (1~1) C) % (1~1) (°) 

0.8 29539 64 73 68 69 
2.0 6155 69 67 72 64 
3.8 113 68 65 68 69 

BPO 

Equation (1) Equ~ion (9) 

ARG NR % (1~1) C) % (1¢1) (°) 

0.8 50000 67 70 82 52 
1.6 2138 78 57 89 43 
2.0 179 86 47 93 38 

envelope: then the electron density in the solvent is set 
to a constant value and the electron density in the protein 
region is constrained to be positive almost everywhere. 
The volume Vp of the protein region is usually estimated 
through the formula given by Mathews (1968). A cyclic 
procedure then starts according to which the modified 
electron-density map p is inverted and the resulting 
phases {4)} are combined with SIR or MIR phases. A new 
electron-density map is then recalculated and the cycle 
restarts. 

We have devised a solvent-flattening procedure (from 
now on denoted FLEX) that may be automatically applied 
to phases provided by direct methods: it is quite effective 
for reducing the phase error and providing an improved 
electron-density map. Let us denote by NREFP the 
number of protein reflections up to the native resolution 
D. Then, 

NREM = NREFP - NREFD 

(9) is used. The above considerations suggests that the 
use of (9) instead of (1) can improve the phasing process: 
however, our tests show that improvement is marginal if 
any. For example, for BPO, when all the reflections up to 
derivative resolution are phased, the mean phase error is 
56 ° (weighted value 52°), very close to that shown in 
Table 3. 

We then tested technique (iii): to derive and apply 
better estimates of A by using the prior information on 
the heavy-atom structure. Once F~r and q~Jv are available, 
from the right-hand side of (10) a better estimate of [A[ 
may be derived: 

[A[ = [[E~[ cos(~b d - q~p) - 2[Ep[ sin2[(~bd - qbp)/2][. 

(10) 

The supplementary condition 

if IAI > IEHI, then fix IAI = [EHI (11) 

was also applied. In our experimental tests, we applied 
(10) and (11) both together and separately. In all the 
cases, no valuable improvement has been found. 

The conclusions that may be drawn from our 
numerous tests are the following: (a) The only valuable 
kind of supplementary information arising from the 
heavy-atom structure is the refined p a r a m e t e r  [O'2]H/[O'2]p , 
which has been used for obtaining the phases analysed m 
Table 3. Such phases will constitute the starting point for 
the solvent-flattening procedure described in the next 
section. (b) No valuable supplemental information is 
obtained via the use of the so-called 'doublet invariants' 
~l;, as noted by Klop et al. (1987) and Fortier et al. (1985). 

4. The solvent-flattening procedure 

Solvent-flattening methods (Wang, 1985; Leslie, 1987) 
are well known. They first determine a molecular 

is the number of reflections that we have to phase through 
FLEX. The procedure consists of a variable number of 
supercycles: the first supercycle does not make use of the 
molecular envelope and is constituted by five macro- 
cycles: the first of them is devoted to phase extension (up 
to native resolution) and to preliminary refinement, and is 
constituted by five microcycles. In each of them, the 
calculations p--+ {4)} --+ p are performed. Only a small 
fraction (say Vf = 0.2Vp) of the electron-density map is 
used in the step p--+ {~b}: such a fraction contains the 
pixels with the largest value of p. The phases obtained by 
Fourier inversion of the modified p map are combined 
with direct-methods (DM) phases via the tangent-like 
formula 

tandPc = [ ~_, miwisinqbi] / [  y~ miwicosdA], (12) 
!_i=1,2 _l l Li=l,2 

where 4) c is the combined phase value, i = 1 corresponds 
to DM phases, i -  2 to phases obtained via electron- 
density inversion, wa is the weight fixed by our DM 
procedure (see paper II), w 2 = DI(2IE'c[), where E' c is the 
value of E' obtained via electron-density inversion. In 
each microcycle, the Nrem/5 reflections having the largest 
value of IE;I are phased. 

Macrocycles from two to five are devoted to phase 
refinement. Consecutive macrocycles perform electron- 
density inversion by using increasing fractions Vf of the 
map: 

v / =  0.20, 0.25, 0.30, 0.35 Vp. 

Again, each macrocyle is constituted by five microcycles: 
in each of them, phases are combined according to (12) 
but n o w  ~)1 corresponds to phases obtained at the end of 
macrocycle 1. Furthermore, a progressively larger weight 
for 4,2 is applied: in each first microcycle, m 1 = 0.7 and 
m2 = 1.3, in subsequent microcycles, ml is diminished 
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by 0.05 and m2 is increased by 0.05. Thus, in each fifth 
microcycle, m I = 0.5 and m 2 = 1.5. 

In supercycle 2 and those following, the molecular 
envelope is calculated according to the Wang-Leslie 
method. The electron-density inversion is calculated by 
assigning unit weight to pixels in the protein region, 
weight equal to 0.50 to pixels in the solvent region. 

In supercycle 2, the molecular envelope is calculated 
by using the average radius R 1 -- 8 A. 15 microcycles are 
performed: five by using VT = 0.20Vp, five with 
Vf=0.35Vp and five with Vf=0.50Vp. In each 
microcycle, the ratio (Rayment, 1983; Cannillo, Oberti 
& Ungaretti, 1983) 

RAT - - I I F o l -  IFcll/lFol 

is calculated, where Ifol is the observed amplitude of the 
protein reflection. RAT is used to correct the weight w2: if 
RAT > 0.5, w 2 = DI(21E'c]), otherwise (under the con- 
dition that w 2 < 1.0) w 2 = 1.2D1(21E'~I ). 

Further supercycles can be performed. For each ith 
supercycle (i > 2): 

(a) The molecular envelope is calculated by using the 
average radius R; = (Ri_l - 2) A. In the last supercycle, 
Rlast : (D + 2) A is used. For example, if D = 1.5 A 
then Rlast = 3.5 A. 

(b) Vp is replaced by 

Vpi = 0.9Vpi_ 1 (with Vp2 = Vp). 

E.g., in supercycle 3, R 3 " - 6  A and V 3 = 0.9Vp. From 
supercycle 3 on, only ten microcycles per supercycle are 
performed, all with Vf constantly equal to 0.5 Vpi. Finally, 
the steps from supercycle 2 to the last supercycle are 
repeated by using only those macrocycles corresponding 
to Vf - 0.5Vpi. 

The following considerations highlight the main 
features of FLEX: 

(i) Quite recently, Abrahams & Leslie (1996) used an 
initial solvent-flattening mask which selected the esti- 
mated solvent fraction and 50% of the protein fraction. 
Such a generous solvent mask is recursively modified by 
removing pixels with values above the solvent cut-off, 
provided they are connected to the protein region. Our 
procedure starts by inverting a much smaller fraction of 
the electron-density map (corresponding to Vf = 0.2 Vp). 
Only in the final stages of the procedure are larger 
fractions used (up to 0,50V p), 

(ii) In standard density-modification procedures, 
(2 lFol-  IFcI ) coefficient values are used (Read, 1986) 
for calculating the next map of the iterative modification 
procedure. We found Fo maps more useful: this is 
probably because in our procedure only a small fraction 
of the electron-density map is used for Fourier inversion. 

(iii) The phase expansion does not proceed per 
resolution shell. The only criterion is the value of IE'cI, 
which seemed slightly better than the Sim (1960) 
criterion (involving 2 IE'oE'~I ). 

(iv) In standard solvent-flattening procedures, phases 
{4~2} arising from electron-density inversion are usually 
combined with SIR phases. In our procedure, DM phases 
are the target only for phases {q62} calculated in the first 
macrocycle of the first supercycle. In the rest of the 
procedure, the target phases {~b I } are those obtained at the 
end of the first macrocycle of the first supercycle. The 
larger effectiveness of the new target is probably due to 
the fact that phases have smaller systematic errors than 
DM phases and better weighting factors. 

(v) Weights m 1 and m 2 (for phase combination) 
progressively vary: as soon as refinement proceeds, the 
phases {(b2} are considered more reliable than phases 
{(~i}" 

(vi) The averaging radius R used for calculating the 
envelope varies from a maximum of 8 A [typically used 
in the procedures derived from the one proposed by 
Wang (1985)] to a minimum value that depends on the 
native data resolution. In the case of APP, the minimum 
Rlast ~ 3 A value was attained. The use of small 
averaging radii is very recent: a radius of 3.75 A has 
been recently used by Abrahams & Leslie (1996) for the 
solution of the structure of bovine mitochondrial FI 
ATPase at 2.8 A resolution. In our method, R decreases 
during the refinement process as soon as phases are 
expected to be sufficiently good. This improves the 
resolution of the envelope and creates small 'isles' of 
protein in the solvent region and larger 'lakes' of solvent 
in the protein region. This last feature prompted us to 
replace the protein volume Vp by Vp; in accordance with 
the progressive reduction of the averaging radius. 

(vii) In our procedure, the solvent region is not set to a 
constant value (say Pavg) as in all traditional Wang-based 
flattening procedures. The weight 0.5 associated with 
pixels in the solvent region retards the flattening process 
(lower convergence to flatness) but allows the envelope to 
be improved if, in subsequent cycles, some prominent 
structural features of the solvent can become part of the 
protein region. Our procedure is an alternative to the 
'flipping' technique proposed by Abrahams & Leslie, 
according to which, for all grid points within the solvent, 
the electron density is set to 

P '  "-- Pavg - ~ - K f l i p ( / 9 -  Pavg) 

w i t h  Kfli p --- - 1. 
(viii) Since DM phases (as well as SIR phases) are 

biased towards the heavy-atom structure, a spherical 
mask for reducing heavy-atom residuals in the calculated 
electron-density map is calculated. 

5. Applications of FLEX 

We applied F L E X  to the five test structures: starting 
phase values and weights are those obtained after 
refinement of the occupancy of the heavy-atom sites 
(see Table 3). The procedure is applied in a default way, 
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Table 6. Mean phase error (ERR) and the number of  
phased reflections (NREFP) up to native resolution after 

application of  our solvent-flattening procedure 

CORR is the correlation factor between final map and 'true' map. 

Structure 
code 

APP 

BPO 

E2 

M-FABP 

NOX 

ERR 
Method NREFP (weighted) CORR 

FLEX 17058 54 (48) 0.7780 
Free-Sim 17040 77 (73) 0.5567 
Solomon 16360 85 (76) 0.4520 
Omit 15505 82 (77) 0.5015 
FLEX 23956 53 (46) 0.7391 
Free-Sim 23949 57 (53) 0.6512 
Solomon 17859 55 (47) 0.6064 
Omit 23950 56 (50) 0.6694 
FLEX 10391 41 (38) 0.8761 
Free-Sim 10382 47 (42) 0.8101 
Solomon 10366 64 (52) 0.4888 
Omit 10383 51 (42) 0.7826 
FLEX 7589 54 (48) 0.6991 
Free-Sim 7576 63 (59) 0.4898 
Solomon 7576 62 (57) 0.5144 
Omit 7589 61 (56) 0.5614 
FLEX 4619 72 (66) 0.4175 
Free-Sim 4610 74 (70) 0.3380 
Solomon 4352 74 (70) 0.3495 
Omit 4615 75 (70) 0.3350 

3, a section of the flattened map is compared with the 
corresponding section of the 'true' map. 

M-FABP: 5630 reflections (up to derivative resolution 
of 2.15 A) were phased by direct methods with mean 
phase error ERR equal to 64 ° (weighted value 60°). The 
CORR value for the corresponding electron-density map 
is 0.4069. The FLEX procedure phases a total of 7589 
reflections, with an ERR value equal to 54 ° (weighted 
value 48°). The corresponding electron-density map is 
straightforwardly interpretable (CORR -- 0.6991). In Fig. 
4, a section of the flattened map is compared with the 
corresponding section of the 'true' map. 

NOX: 3858 reflections (up to derivative resolution of 
3.0 A) were phased by direct methods with mean phase 
error ERR equal to 73 ° (weighted value 69°). The CORR 
value for the corresponding electron-density map is 
0.3020. The FLEX procedure phases a total of 4619 
reflections, with an ERR value equal to 77 ° (weighted 
value 74°). The corresponding electron-density map is 
not immediately interpretable (DM phases are too noisy 
to constitute a sufficiently good starting point) and is 
marked by a CORR value equal to 0.4175. 

In order to compare our method with other widely 
used flattening procedures, we processed our direct- 

without any user intervention, and the results are 
summarized in Table 6. 

APP: 1863 reflections (up to derivative resolution of 
2.0 A) were phased by direct methods with mean phase 
error ERR equal to 59 ° (weighted value 55°). The 
corresponding electron-density map shows a correlation 
with the 'true' refined map equal to 0.4565. DM phases 
are pseudo-centrosymmetrical (one symmetry-indepen- 
dent heavy-atom position in the space group C2). The 
solvent-flattening procedure breaks the pseudo-centro- 
symmetry and phases a total of 17 058 reflections, with 
ERR = 54 ° (weighted value 48°). The corresponding 
electron density is straightforwardly interpretable (CORR 
-- 0.7780). In Fig. 1, the skeleton of APP is shown. 

BPO: 12 673 reflections (up to derivative resolution of 
2.8 A) were phased by direct methods with mean phase 
error ERR equal to 57 ° (weighted value -- 52°). The 
CORR value for the corresponding electron-density map 
is 0.4452. The FLEX procedure phases a total of 23 956 
reflections, with an ERR value equal to 53 ° (weighted 
value = 46°). The corresponding electron-density map is 
straightforwardly interpretable (CORR = 0.7391). In Fig. 
2, a section of the flattened map is compared with the 
corresponding section of the 'true' map. 

E2:6556 reflections (up to derivative resolution of 
3.0/~) were phased by direct methods with mean phase 
error ERR equal to 56 ° (weighted value 52°). The CORR 
value for the corresponding electron-density map is 
0.4968. The FLEX procedure phases a total of 10 391 
reflections, with an ERR value equal to 41 ° (weighted 
value 38°). The corresponding electron-density map is 
straightforwardly interpretable (CORR = 0.8761). In Fig. 

(a) 

(b) 

Fig. 1. APE (a) Skeleton from the electron-density map obtained by 
applying FLEX to our direct-methods phases; (b) skeleton from the 
'true' map (visualized by RasMol v2.3 by Roger Sayle). 
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methods phases by the program dm-l.6.9 of the CCP4- 
3.2 package (Collaborative Computing Project, Number 
4, 1994) in the different modes: free-Sim mode, Solomon 
mode and reflection-omit mode (Leslie, 1987; Abrahams 
& Leslie, 1996; Cowtan & Main, 1996). The various 
modes contain both solvent-flattening and histogram- 
matching procedures and have been run according to the 

scripts shown in Table 7. For each test structure, the 
values of NREFP, ERR and CORR are given for a useful 
comparison. We observe that the efficiency of FLEX is 
always remarkably better. 

It is worthwhile noting that we used all the programs in 
a 'default' way: therefore, we cannot claim that dm 
procedures cannot provide better results than those we 

(a) (a) 

(b) 

Fig. 2. BPO. (a) Section y = 0 of the electron-density map obtained by 
applying FLEXto our direct-methods phases; (b) sectiony = 0 of the 
true (obtained from the published model) map. 

(b) 

Fig. 3. E2. (a) Section y = 0.3 of the electron-density map obtained 
by applying FLEX to our direct-methods phases; (b) section y = 0.3 
of the true (obtained from the published model) map. 
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Table 7. Scripts used for dm program (to perform solvent 
flattening + histogram matching) in the three modes 

Free-Sim mode 

dm HKLIN struct_in.mtz HKLOUT struct_out.mtz < < EOF 
SOLC <solc> 
MODE SOLV HIST 
NCYC 200 
LABIN FP = Fo SIGFP = SigFo PHIO = Ph_MD FOMO = W_MD 
LABOUT PHIDM = Ph_Dm FOMDM = W_Dm 
EOF 

Solomon mode 

dm H K I N  struct_in.mtz I-IKLOUT struct_out.mtz < <  EOF 
SOLC.. <solc> 
MODE FLIP 
NCYC AUTO 
SCHEME ALL 
COMBINE SIGMAA 
LABIN FP = Fo SIGFP = SigFo PHIO = Ph_MD FOMO = W_MD 
LABOUT PHIDM = Ph_Dm FOMDM = W_Dm 
EOF 

Reflection-omit mode 

dm HKLIN struct_in.mtz HKLOUT struct_out.mtz < < EOF 
SOLC.. <solc> 
MODE SOLV HIST 
NCYC AUTO 
SCHEME ALL 
COMBINE OMIT 
LABIN FP = Fo SIGFP = SigFo PHIO = Ph_MD FOMO = W_MD 
LABOUT PHIDM = Ph_Dm FOMDM = W_Dm 
EOF 

(a) 

(b) 

Fig. 4. M-FABP. (a) Section y = 0 of  the electron-density map obtained 
by applying FLEXto our direct-methods phases; (b) section y = 0 of  
the true (obtained from the published model) map. 

obtained by choosing suitable program parameters. In 
any case, FLEX proved to be a valid alternative to the 
others. 

6. Conclusions 

Theoretical results and practical applications described in 
this paper show that: (a) direct methods can solve protein 
structures without prior information on the heavy-atom 
structure. However, this information, when available, 
does not afford supplementary valuable information; (b) 
solvent-flattening procedures are particularly suitable for 
phase extension and refinement of direct-methods 
phases. A new procedure (FLEX) has proved to be 
highly competitive with most of the used flattening 
methods. There are however various limitations of  FLEX. 
E.g. (a) the values for a significant number of variable 
parameters (V~ the relative weights M1, M2, the initial 
averaging radius Ri and its decrement etc.) have been 
heuristically chosen. There is no established theoretical 
development to which to refer, but only our (limited) 
experience; (b) the procedure is rigid: there is no special 
criterion for judging the best phase improvement. FLEX, 
however, shows that a judicious choice of the parameters 
(we have used the same 'default' parameters for all the 
test structures) can further improve modem solvent- 
flattening procedures. 

A P P E N D I X  A 
The 'cross-over case' 

When Fz-t is large and Fp is small, the so-called 'cross 
over' may occur. In this case, despite the condition 
A > 0, the sign of Fp is reversed with respect to F/-/and 
cos ~ < 0. Triplets with some reflections showing cross 
over cannot be correctly estimated by (1). Indeed, in the 
absence of any information on IFHI, the most probable 
assumption cos ~ > 0 is always preferred by (1). Once the 
heavy-atom structure is known, (4) can be applied instead 
of (1). Suppose that all the three reflections forming the 
triplet have symmetry-restricted values, to 0 or n', the Ai, 
i = 1, 2, 3, are all positive, the third reflection shows a 
cross over. Then, 

81= 8 z = O, 83 = zr, 

A, = 2[cr3/cr32/2]Hl(S'l -- R'I)(S ~ - R'2)(S'3 + R~)I, (13) 

~n = 7g. 

Unlike (1), the distribution (4) estimates ~ = Jr, in 
agreement with the traditional isomorphous derivative 
techniques. It is worthwhile noticing that A,, may be quite 
large because it involves a sum [i.e. (S~ + R~)] instead of 
a difference [i.e. (S~ -R~)] .  In order to understand how 
(4) works, let us consider the case in which the third 
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reflection is a general reflection: then, 

A .  = 2 D 3 1 a 3 / 2 ] H I ( S '  , - R ' , ) ( S ~  - R'2) 

X [(S 3 cos  a3) 2 -'[- S~ 2 sin 2 a3]1/2 I 

= 2[crx/cr~/2]H](S' 1 -- R'I)(S ~ - R~) 

x [$3 a + R~ 2 - 25'3R'3 cos a311/21, (14) 

tan~, = S t cos a3/(S ~ cosa 3 - R~). 

We notice that both (S t + R ~ )  in (13) and 
IS a + R'32 - 2S~R' 3 cosa3] 1/2 in (14) coincide with [EH[. 

The above consideration suggests that (4) may be more 
useful than (1) for dealing with the cross-over case but 
presents a quite dangerous overestimation of the phase 
reliability. This is an additional confirmation of the 
criticism we made to (4) in the main text. 

The authors gratefully acknowledge many helpful 
discussions with Dr Doriano Lamba. 
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